Set Notation & Interval Notation

Many algebra problems have a single solution. If we have x + 3 = 8, the only answer is 5, and we can simply write x = 5. Other problems have multiple solutions or a range of solutions. There are two main ways to report answers to a question like this: interval notation and set notation.

SET NOTATION

Set notation is useful especially when we have a small, finite number of solutions, rather than a range of solutions. Take the equation $x^2 = 9$. There are two answers: 3 and -3. The list of all possible solutions to a problem is called its **solution set** and we should write it as a set using roster notation: $\{-3, 3\}$. The curly brackets (brace brackets) indicate that the answer is a list and that -3 and 3 are the only two acceptable answers. A solution in roster notation *can* have more than two numbers in the brackets.

It's also possible to write the solution set to a problem by describing the solutions rather than by listing all of them. If we were asked, "What quantities of money can be withdrawn from a typical ATM?" and the ATM only dispenses \$20 bills, then the answers are 20, 40, 60, 80, and so on. We could write {20, 40, 60, ...} as a way of listing the answers, or we could use **set-builder notation** to say how to calculate the answers: $\{x \mid x = 20k, k \in \mathbb{N}\}$. We read this as: The solutions are x, where x is 20 times k, and k is a natural number. This is a very precise answer, and more precise than your teacher is likely to ask for.

INTERVAL NOTATION

Interval notation is used whenever the answers to a problem form one or more continuous ranges of the number line. This frequently happens in inequalities.

Take for example, $x^2 < 9$. After some thought, it should be obvious that any number between -3 and 3 (but not including either number) is a solution to the problem. We express this in interval notation by enclosing the numbers that are the endpoints of the solution in brackets. We use **round brackets** or parentheses when the interval does not include the endpoints, and **square brackets** when the interval does include the endpoints. Here, since the solution interval doesn't include those numbers on the end, we write: (-3, 3). If the question were $x^2 \le 9$, -3 and 3 would be valid solutions. We use square brackets to mark endpoints included in the solution: [-3, 3]. We can also use both bracket types in expressing a solution. For $4 < x \le 7$, the interval runs from 4 to 7, and 4 is not a solution, but 7 is. We write: (4, 7].

Sometimes there's no endpoint. For the question $x \ge 12$, there's a lowest possible solution, but no highest possible solution. We use the infinity symbol to show a lack of an endpoint, and we must always use a round bracket with it; infinity isn't a number, so it can't be a solution. We can't include it as part of a solution set. We write [12, ∞). We

Authored by Darren Rigby

use $-\infty$ for solutions with no lowest endpoint: $x \le 12$ is expressed as $(-\infty, 12]$. Sometimes there are two intervals in the solution. For $x^2 \ge 9$, any number greater than 3 is a solution and so is any number less than -3, including 3 and -3. The solutions fall in two intervals that are separated by a gap. We indicate this by borrowing a symbol from set theory: the union symbol, υ . This symbol is often translated as "or", meaning that any point in this interval *or* that interval is a valid solution. The solution to $x^2 \ge 9$ is written $(-\infty, -3] \cup [3, \infty)$. The solution to $x \ne -4$ would be $(-\infty, -4) \cup (-4, \infty)$, indicating that the "gap" between the two intervals is only as large as the number -4 itself.

If any number is a solution to an equation or inequality, as in $x^2 \ge 0$, then we write \mathbb{R} in set notation ("all real numbers") or $(-\infty, \infty)$ in interval notation. If no number is a solution, as in $x^2 = -5$, then we write \emptyset in either notation. This is the symbol for the null set, meaning the solution set is empty.

EXERCISES

A. Is 0 a solution to the problem whose solution sets are given below?

1) [-2, 5]	5) $\{x \mid x = k + 0.5, where k is an integer\}$	
2) (-2, 5]	6) {-15, -14, -13, 10, 11, 12}	
3) {-2, 5}	7) (-∞, -5] ∪ (-1, 6)	
4) (-7, 0]	8) [-3, -1] u [8, 10]	
Write the solution sets to the following problems in the appropriate potation		

B. Write the solution sets to the following problems in the appropriate notation.		
	1) x ² < 25	6) How much money can be withdrawn from ATMs that dispense \$20 and \$50 bills?
	2) x ≤ 8	7) x > 13
	3) $x < 7$ and $x \ge 2$	8) $x < 7$ or $x \ge 2$
	4) List the factors of 12.	9) State the domain of $\frac{x+5}{x-4}$.
	5) $x > 7$ and $x \le 2$	10) $x > 7$ or $x \le 2$

SOLUTIONS

A: (1) yes (2) yes (3) no (4) yes (5) no (6) yes (7) yes (8) no

B: (1) (-5, 5) (2) [-8, 8] (3) [2, 7) (4) {1, 2, 3, 4, 6, 12} (5) Ø (6) {20, 40, 50, 60, 70...} or {x | x = 20a + 50b, where a and b are whole numbers; a and b can't both be 0} (7) (13, ∞) (8) (-∞, ∞) or ℝ (9) (-∞, 4) ∪ (4, ∞) (10) (-∞, 2] ∪ (7, ∞)

This work is licensed under a Creative Commons Attribution 4.0 International License