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Essentials of Calculus 2 
Continuity & Differentiability 

   
By now you know that evaluating the limit of a function at a particular value usually just 
boils down to plugging in that number, at least for most curves that we’re likely to 
encounter. A limit might fail to exist at a vertical asymptote or if there’s a “hole” in the 
graph (both of which can happen with a rational function) or at the value where two 
pieces of a piecewise function come in contact. (We would also have limits failing to 
exist if there’s an interval outside the domain of the function, such as limx→0   x2 − 4, but 
in that case the limit is pretty much meaningless; in the other cases, we might expect 
the limit to work out, depending on the details going in.) 
 

If a function doesn’t have any of these problems, then graphing that function tends to 
mean that it’s one smooth curve that can be graphed without lifting your pencil. We call 
that a continuous function. (If it’s not, it’s a discontinuous function.) The proper 
definition of a continuous function is that the function is continuous at every point in its 
domain. A function is continuous at a point (an x-value, really) if three things are true: 
 

  ● The function can be evaluated at that point, i.e. ƒ(a) exists 
  ● The limit of the function exists at that point, i.e. limx→a ƒ(x) exists 
  ● Those two things agree with each other, i.e. limx→a ƒ(x) = ƒ(a) 
 

That third statement is pretty powerful. If a function is known to be continuous, then 
evaluating a limit is as simple as plugging the number in. The older Stewart textbook 
had a series of theorems with very useful results, summarized here: 
 
The following types of functions are continuous at every number in their domains:  
 • polynomials     • inverse trigonometric functions  
 • rational functions     • exponential functions 
 • root functions     • logarithmic functions 
 • trigonometric functions     
 

Also, any sum (ƒ + g), difference (ƒ − g), scalar multiple (cƒ), or product (ƒg) of these 
functions is continuous over their domains. Any quotient of these functions (ƒ/g) is 
continuous where g(a) ≠ 0. If g is continuous at a and ƒ is continuous at g(a), then 
ƒ(g(a)) is continuous at a. 
 
We do a number of problems in Calculus 1 which approach proofs, and it’s useful to be 
able to hand-wave and say that we know that certain types of functions are continuous 
because Stewart says so. 
 

If a function has a “hole” problem at a point, where altering the function by assigning a 
value (or a new value) to the function for that value, then the original function has a 
removable discontinuity. If the pieces of a piecewise function don’t line up, then the 
function has a jump discontinuity. 
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The Intermediate Value Theorem (IVT) tells us that if we have a continuous function 
which has two distinct outputs y1 and y2 for two distinct inputs, then somewhere 
between those inputs there must be a point where the function outputs every possible 
value between y1 and y2. It doesn’t tell you where; just that the point exists. This doesn’t 
feel like much of a useful theorem — for most functions we’ve dealt with we could just 
solve, but it doesn’t take much to come up with a function where solving algebraically 
doesn’t work anymore, say, ƒ(x) = sin x + ln x. Does this function have a solution, a 
value for x where sin x + ln x = 0? By the box on the previous page, it’s continuous on 
the interval (0, ∞), which is its domain. (See? Useful!) We can try some numbers. 
ƒ(0.001) = −6.9068… and ƒ(1) = +0.84147…. One result was positive and one was 
negative. All the conditions of IVT are met, and we have 0 between y1 and y2, so we 
know that a solution exists for x between 0.001 and 1. We don’t know where, but we 
can start closing in to get any degree of precision by tightening that window between 
0.001 and 1. 
 

We’ll never get the exact answer to that question, but we can approximate, and for 
many applications, that approximation can be good enough (such as for science or 
engineering purposes). 
 
DIFFERENTIABILITY 
 

The concept of differentiability is just as easy to understand, but a bit harder to show. If 
a function is differentiable, then you can take its derivative anywhere on its domain. 
(“Differentiable at a point” has the obvious related definition.) The trouble is that the 
textbook doesn’t give a test for differentiability — if you can take the derivative, it’s 
differentiable. 
 
It’s kind of defined by contrast. 
  ● If the function is discontinuous at a point, it cannot be differentiable at that point. 
(In fact, if you know it is differentiable at that point, that is sufficient to prove it’s 
continuous at that point). 
  ● If the function has a point where the curve becomes vertical, the function is not 
differentiable at that point. The curve y = x3 flattens out at (0, 0) so the slope there is 
horizontal. Then the inverse function y = ³  x has a vertical slope at x = 0. The curve is 
not differentiable here. 
  ● If the function has a sharp corner or point, it’s not differentiable at that point. 
 

Consider y = |x|, the absolute value function. For x ≥ 0, the graph behaves like y = x, 
and the slope is 1. For x < 0, the graph behaves like y = −x, and the slope is −1. 
Because the slopes coming together at x = 0 disagree, there’s no single slope and the 
“curve” is not differentiable at x = 0. 
 

This may remind us of having two one-sided limits disagree, resulting in an overall limit 
that does not exist. We can make use of this to create a test for differentiability: 
 

A function ƒ(x) is differentiable at a point only if the associated difference quotient, 
[ƒ(x + h) − ƒ(x)]/h is continuous at that point. 
 


