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Limits at Infinity 

   
You’ve seen limit problems like the one at the right where the answer is that 
it goes to infinity (which also means the limit technically does not exist). This 
is an infinite limit. This worksheet refers to limit problems where x 
approaches infinity, rather than a finite quantity, like 4, which are called limits at 
infinity. 
 

If we say limx→k ƒ(x) = L, with k being finite, then we mean that when we evaluate ƒ(x) at 
values that get closer and closer to k, the results get closer and closer to L. So what 
does limx→∞ ƒ(x) mean? We can’t get closer and closer to infinity. 
 

Consider what that limit in the corner is telling us. It says that as we evaluate that 
rational function at values that get closer and closer to 4 (but always greater than 4), the 
value of the function increases without bound—the value gets higher and higher. We 
can use that interpretation to understand the limit at infinity: To say that limx→∞ ƒ(x) = L 
is to say that as we evaluate ƒ(x) at values of x that are getting higher and higher, the 
results get closer and closer to L. (A similar definition would explain limx→−∞ ƒ(x).) 
 

Graphically, such a limit usually looks like a horizontal 
asymptote, but it doesn’t always. Consider the 
functions ƒ(x) = 1/x, g(x) = −1/x, and h(x) = (sin x)/x. 
They are mapped on the same set of coordinates at 
the right, and slightly exaggerated. By now, you 
should know that the curve of ƒ(x) has a horizontal 
asymptote at y = 0, and therefore so should g(x). The 
curve of h(x) does not have a horizontal asymptote at 
y = 0 — the fact that the curve keeps crossing that 
line disqualifies it — but is it true that limx→∞ h(x) = 0? 
 

Logically, it should be. We can say that the value of ƒ(x) and g(x) get closer to 0 as x 
increases — it’s worth memorizing that limx→∞ 1/x = 0 — and these two curves act as 
upper and lower bounds for h(x). After all, with x > 0: 
 

−1 ≤ sin x ≤ 1 

−  ≤  ≤  

By the same logic that gave us the Squeeze Theorem, h(x) should also get closer to 0 
on average as x increases. We will want the exact definition of a limit at infinity to 
include this idea. 
 

Limits at infinity are inherently one-sided limits. We can only think of approaching a limit 
as x → ∞ from the left, and as x → −∞ from the right. As such, there’s no requirement 
that the two one-sided limits must agree; the only way a limit at infinity doesn’t exist is if 
it does not settle on a finite result. Such a limit will either increase without bound or 
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decrease without bound. 
THE PRECISE DEFINITION 
 

There is no epsilon-delta definition for a limit at infinity, but it has a similar philosophy. It 
still gives a maximum tolerance, ε, for the limit (how far from L am I allowed to be?) and 
requires that we provide a point past which that tolerance will always be met. For the 
epsilon-delta version, we say that so long as x is no more than δ away from k, then ƒ(x) 
will be no more than ε away from L. For limits at infinity, we give a minimum value M, 
and as long as x is greater than M, then ƒ(x) will be no more than ε away from L. 
 

Example 1: Prove that limx→∞ (sin x)/x = 0 using the formal definition of a limit.  
 

Solution: Imagine we had a heckler, someone who didn’t believe us about the limit 
being zero. The heckler says, “I won’t believe you about the limit being zero unless you 
can get within 0.01 of zero and stay there!” We can meet his challenge. We know that 
our curve is bounded by y = 1/x and y = −1/x. Since 1/x is a decreasing and positive 
function over the positive real numbers, when x > 100, 0.01 > 1/x > 0. For any value 
past x = 100, 1/x is within our heckler’s stated tolerance. A similar argument can be 
made for y = −1/x. We’ve shown that y = (sin x)/x is no further away from zero than 
these two curves are, so y = (sin x)/x must also be within tolerance. 
 

Our response to the heckler, then, is, “We can get y within 0.01 of zero, if you set x to a 
value where x > 100.” 
 

The heckler shouts back, “Oh yeah? Well, I won’t believe you unless you can get within 
0.00001 of zero and stay there!” 
 

We say, “That was, what, four zeroes after the decimal? One over ten thousand? Fine. 
As long as you set x > 10,000, we’re within tolerance again.” 
 

“Oh yeah? Well—” 
 

“Look. No matter what number you name, we can be within tolerance by taking your 
number, finding its reciprocal, and making that our new minimum value. Since this is 
supposed to be a formal proof, if you name a positive number ε, no matter how small, 
and you require |ƒ(x) − 0| < ε for all x > M, then we can calculate the value of M as 
M = 1/ε. Then: 
 

x > M ⇒ x > 1/ε ⇒ 1/x < ε, since x is positive 

⸫ −ε < −  ≤  ≤  < ε 

⸫ | | < ε ⇒ |  − 0| < ε ⇒ |ƒ(x) − L| < ε 

 

…and the requirements of the definition of a limit at infinity are met. Also, moving the 
goalposts is a logical fallacy, so stop arguing. We can beat you no matter what you 
say.” The heckler is defeated since we’ve shown he can always have his demands met 
by writing a generic expression for M in terms of ε that always leads back to the 
statement of tolerance, |ƒ(x) − L| < ε. The limit really does equal zero. 
 

This formal definition of a limit is also the definition of an asymptote, but without the 
absolute value signs. That’s why horizontal asymptotes can be “crossed” at low, finite 
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values of x — If ƒ(c) = L, but c < M, it doesn’t interfere with the definition. 

Example 2: Find . 

Solution: You looked at the end behaviour of rational expressions like this in Grade 
12 Math. Recall: 
 

 ● If the degree of the numerator is greater than the degree of the denominator, then 
the curve goes to infinity (or negative infinity). 
 ● If the degree of the numerator is one more than the degree of the denominator, 
then the curve has a slant asymptote, found by performing polynomial division. 
 ● If the degree of the denominator is greater than the degree of the numerator, then 
the curve has a horizontal asymptote at y = 0. 
 ● If the degrees of the numerator and denominator are equal, the curve has a 
horizontal asymptote at y = k, where k is the ratio of the leading coefficients in the 
expression. 
 

The question here falls into the last category; the answer should be 3⁄2. We need to be 
able to show this with a limit, however. Here’s the more rigorous method: multiply the 
fraction by x−b/x−b where b is the degree of the denominator. We get:  
 

 =  =   

 =  =  

 

We can justify the step where the limit is evaluated by using the Limit Laws and 
breaking it down.  
 

Why do rational functions behave this way? The degree of the polynomial is an 
indication of how fast it increases toward infinity, and the trailing terms (all terms other 
than the leading term) don’t contribute to that in any meaningful way.  
 

If the numerator is of higher degree than the denominator, the denominator quickly 
shrinks to insignificance just like the trailing terms do, and the function simply increases 
(or if negative, decreases). 
 

If the denominator has the higher degree, the same thing happens, with a small number 
of a very large number, which has the same result as limx→∞

 1/x: it tends to 0. 
 

Something more interesting happens when the degrees are equal. Both the numerator 
and denominator increase at more or less the same rate, with one tending to be a finite 
multiple of the other. The higher the value of x, the closer this statement gets to being 
true (as the trailing terms become less important in evaluating the fraction), and so the 
limit at infinity takes on the value of that finite multiplier. 
 
LIMITS WORTH KNOWING 
 

limx→0 1/x = ∞ limx→∞ 1/x = 0 limx→±∞ arctan x = ±π⁄2 limx→−∞ ex = 0 
 

lim 
x → ∞ 

3x3 − 5x + 9 
2x3 − 4x2 + 7 

lim 
x → ∞ 

3x3 − 5x + 9 
2x3 − 4x2 + 7 

lim 
x → ∞ 

3 · x³⁄x³ − 5 · x⁄x³ + 9 · 1⁄x³ 
2 · x³⁄x³ − 4 · x²⁄x³ + 7 · 1⁄x³ 

lim 
x → ∞ 

3 − 5 · 1⁄x² + 9 · 1⁄x³ 
2 − 4 · 1⁄x + 7 · 1⁄x³ 

3 − 0 + 0 
2 − 0 + 0 
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EXERCISES 
A. 1) Without using calculus, what is the location of the horizontal asymptotes of the 

graph of y = ? 

 2) Find the y-intercept of the graph in part (1). 
 

 3) Does your answer to (2) mean that the limit at infinity of y should not be the same 
as your answer to (1)? Why or why not? 
 

 4) If you graph this curve at desmos.com, you’ll see that for values of x greater than 
2, the curve is strictly decreasing. Use this graph to find a minimum value for M which 
can be used to prove your answer to limx→∞ y for ε = 0.09. 
     

B. Your classmate Jason looks at the question, “Find .” 

He divides the numerator by the denominator and gets the result 3x + 1 plus a 
remainder. He says the answer to the limit is therefore 3x + 1. Your other classmate 
Sonja says that the limit simply doesn’t exist. Who (if anyone) is right? 
 

C. Graph y = x2 and y = ln x at desmos.com. Use this graph to find . 

 

D. Your classmate Janoš says that lim x→∞ (sin x) = 0, since it oscillates around this 
value. Use the precise definition of a limit to prove that the limit cannot equal zero. 
     
E. If ƒ(x) = P(x)/Q(x), where P(x) and Q(x) are polynomials, and limx→∞ ƒ(x) = L, L ∈ ℝ, 
is it possible that limx→−∞ ƒ(x) ≠ L? Why or why not? 
 

SOLUTIONS 
A: (1) y = 3, since the numerator and denominator are both degree 3   (2) (0, 3)    
  (3) The limit only looks at large values of x, so the value at x = 0 isn’t relevant. Any 

value for M in the formal definition of the limit would have to be greater than 2, the 
location of the vertical asymptote.   (4) You can use M = 18, since the curve 
passes through (18, 3.09) exactly. 

B: Sonja is right. The degree of the numerator is higher than the denominator, so the 
answer is ∞. Jason has found the equation of the slant asymptote, and the curve 
approximates that line for large values of x, but limx→∞ (3x + 1) is ∞. The limit tends 
to infinity for both expressions, and so neither limit exists. The answer to a limit 
question is either a number or “D.N.E.”, never an expression in x. 

C: Since the denominator increases much faster than the numerator, the limit is 0. 
D: Consider the case where ε = 1. Then we need a value M such that sin x < 1 for all 

x > M, but there are infinitely many solutions to sin x = 1, in the form x = 2kπ, k ∈ 
ℤ. For any positive value of ε that is less than 1, there will also be infinitely many 
solutions to sin x = ε. Since ε cannot be made arbitrarily small, the requirements of 
the precise definition of a limit cannot be met. 

E: It’s not possible. If the degree of P(x) is higher than Q(x), the limit wouldn’t be a 
real number. If Q(x) is higher degree than P(x), both sides will tend to zero. If the 
degrees are equal, the variable parts of the leading term will effectively cancel; the 
change in the sign of x won’t change the ratio of the leading coefficients. 

3x3 + 6x2 + 14x + 84 
(x + 7)(x − 2)2 

lim 
x → ∞ 

9x4 − 6x3 + 13x2 − 3x + 7 
3x3 − x2 + 7x + 2 

lim 
x → ∞ 

ln x 
x2 


