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Open Statements & Quantified 
Statements 

   

Closed statements are statements about specific things that are absolutely true or 
false. A statement like “February 14 is Valentine’s Day,” is always true. 
 

What about the argument: “Every day has 24 hours. Therefore Valentine’s Day has 24 
hours.” This argument uses more complex relationships than we’ve seen. It’s clearly a 
valid argument, but it’s awkward to express using closed statements. It uses a category, 
and applies the properties of the category to a specific thing within the category. This 
idea of a property that an object has is best expressed as an open statement. 
 

An open statement is written as P(x), and it tells us that object x has property P. For 
example, P(x) might be defined as “P(x): x has 24 hours.” These statements can have 
multiple inputs: Q(x, y): x is bigger than y. 
 

We introduce a symbol that means that a statement applies to every object: ∀x (for all x). 
We could write the sentence “Every day has 24 hours,” as ∀x P(x). We need to worry 
about the scope of “every”, however. Do we mean literally everything? Cats have 24 
hours, the Eiffel Tower has 24 hours, sincerity has 24 hours…. We will also need to 
state what sort of object the statement describes. We call this the universe. Our 
argument is valid over the universe of days, which contains Valentine’s Day: 
 

 Let U be the universe of days. Let P(x) = “x has 24 hours”. Let v ∈ U. Then: 
 

 ∀x P(x) 
 ∴  P(v) 
 

This argument is valid because of the Law of Universal Specification: If an open 
statement applies to every object in the universe, then we can specify an object from 
the universe, and the open statement applies to it. 
 

The choice of universe is important. Consider the argument, “Every day has 24 hours. 
February doesn’t have just 24 hours. Therefore February is not a day.” This looks like 
we can create this argument in the same framework as the previous argument, except 
for our conclusion. If we wish to prove that something is not a day, that’s essentially 
saying it’s not part of the universe. That’s a problem. We’ll need to change our definition 
of the universe to include February. We can create a second open statement for the 
property of being in the category of days: 
 

 Let U be the universe of objects. 
 Let P(x) = “x has 24 hours”. Let D(x) = “x is a day”. Let f ∈ U. Then: 
 

① ∀x [D(x) → P(x)] Given For all x, if x is a day, then it has 24 hours. 
② ¬P(f) Given February does not have 24 hours. 
③ D(f) → P(f) Univ. Spec. ① If February is a day, then it has 24 hours. 
④ ∴ ¬D(f) Mod. Toll., ③, ② Therefore, February is not a day. 
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We took a universally quantified statement (a statement that talks about everything in 
the universe) and used it to make a statement about a specific thing in the universe. 
Once we did that, all of the propositions in lines 2–4 behave like closed statements. 
(After all, the difference between open and closed statements is whether they apply to a 
class of objects or a specific object.) 
 

We can reverse the process, using information about specific objects in the universe to 
make broader statements, by referring to a single generic member of the universe, 
proving something about it, and expanding the statements to describe the universe, by 
the Law of Universal Generalization (a powerful method of proof which you’ll see in 
use later in the course), or we can find an example which proves a universally quantified 
statement is not true. Such an example is called a counterexample. 
 

Consider this argument: “2000 is a year. 2000 did not have 365 days. Therefore not 
every year has 365 days.” The conclusion of this argument negates a universally 
quantified statement. What does it mean to do that? It’s not the same thing as “all years 
do not have 365 days,” — that’s just as false as saying “all years have 365 days.” The 
negation means that some years don’t have 365 days, but not necessarily all years. 
We’re now discussing the existence of objects with certain properties within the universe. 
We use a second quantifier, ∃ x, (“there exists x”) when we want to say that at least one 
object in the universe satisfies certain conditions: 
 

 ¬∀x P(x) ⇔ ∃x [¬P(x)] 
 

What happens when we write ¬∃x P(x)? If it’s not true that an object with a particular 
property exists, then it’s true that every object doesn’t have that property: 
 

 ¬∃x P(x) ⇔ ∀x [¬P(x)] 
 

The Law of Existential Generalization says that if we can describe an object in the 
universe with a property, then we can say that there exists an object in the universe with 
that property. Now we can construct the argument about years: 
 

 Let U be the universe of objects. 
 Let A(x) = “x is a year”. Let D(x) = “x has 365 days”. Let t ∈ U. Then: 
 

① A(t) Given 2000 is a year. 
② ¬D(t) Given 2000 did not have 365 days. 
③ ¬[¬A(t)] ∧ ¬D(t) Conj. ①, ②, D.Neg.  
④ ¬[¬A(t) ∨ D(t)] DeMorgan’s ③ 
⑤ ¬[A(t) → D(t)] Implication ④  
⑥ ∃x ¬[A(x) → D(x)] Exist.Gen., ⑤ There is a year that does not have 365 days. 
⑦ ∴ ¬∀x [A(x) → D(x)] Mod. Toll., ③, ② Not every year has 365 days. 
 

We’ve seen laws of Universal Generalization, Universal Specification, and Existential 
Generalization. There is a law of Existential Specification: if we can say that there 
exists an object with certain properties then we may discuss such an object. 
 

When dealing with more than one object, there may be more than one quantifier. To 
express the idea “The sum of any two integers is also an integer,” could be written: 
∀x, y [[(x ∈ ℤ) ∧ (y ∈ ℤ)] → (x + y ∈ ℤ)]. 
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They can also be mixed, one universal, one existential. The phrase “There’s someone 
for everyone,” means “For everyone, there is a suitable partner.” As a quantified 
statement (with the obvious definitions), we would write this as ∀x ∃y [P(x, y)]. When 
you have both kinds of quantifiers, the order matters! The same statement with the 
quantifiers reversed, ∃y ∀x [P(x, y)], would mean “There is a person who could be a 
suitable partner for everyone.” That’s very different! 
 

Negations work on multiple quantifiers in the obvious way. The negation of the 
statement, “There is a person who could be a suitable partner for everyone,” would go 
like this: 
 

 ¬[∃y ∀x [P(x, y)]] 
⇔ ∀y ∃x [¬P(x, y)] For every person, there is someone who would not be a suitable partner. 
 

EXERCISES 
A. Let U be the universe of objects. Use the definitions provided to interpret the 
quantified statements as familiar English expressions, or vice versa. 
 A(x): “x is gold” H(x): “x is happiness” Q(x): “x is water” 
 B(x): “x is bad” J(x): “x is a stage” R(x): “x rolls” 
 C(x, y): “x collects y” K(x, y): “x is better than y” S(x): “x is blood” 
 D(x): “x is money” L(x): “x is a tree” T(x, y): “x is thinner than y” 
 E(x, y): “x buys y” M(x): “x is moss” W(x): “x is in the world” 
 F(x): “x is free” N(x): “x is an apple” Y(x): “x is correct” 
 G(x): “x glitters” P(x): “x is a stone” Z(x, y): “x is a source of y” 
 

 1) ∀x [W(x) → J(x)] 
 

 2) Money isn’t everything. 
 

 3) ∀x, y [[D(x) ∧ L(y)] → ¬Z(y, x)] 
 

 4) You can’t get blood from a stone. 
 

 5) ∀x, y [E(x, y) → Y(x)] 
 

 6) All that glitters is not gold. (Not everything that glitters is gold.) 
 

 7) ∀x, y [[P(x) ∧ R(x) ∧ M(y)] → ¬C(x, y)] 
 

 8) Money can’t buy happiness. 
 

 9) [∃x [N(x) ∧ B(x)]] → [∀x [N(x) → B(x)]] 
 

B. Negate the following statements. (You don’t need to do anything to the information 
before the colon “:”.) 
 1) ∀x [P(x) ∨ Q(x)] 

 

 2) ∃x [P(x) → Q(x)] 

 

 3) ∀x,y [[P(x) ∨ Q(y)] → S(x, y)] 

 

 4) With x, y ∈ ℝ: ∀x ∃y [x · y = 1] 

 

 5) With x, y, z ∈ ℝ, x < y: ∀x, y [[ƒ is a continuous function] ∧ [|ƒ(x)|/ƒ(x) ≠ |ƒ(y)|/ƒ(y)]] 
→ ∃z [[z ∈ (x, y)] ∧ [ƒ(z) = 0]] 
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C. Which law (Univ. Spec., Univ. Gen., Exist. Spec., Exist. Gen.) justifies the following 
underlined statements? 
 1) To prove: If n is an even number, then n² is an even number. 
  Let n be an even number. Then we may write n = 2m for some integer m. … 
 

 2) …Thus n² = 4m² = 2(2m²). We have said m is an integer, so m² is an integer and 
so is 2m², since the product of two integers is an integer. … 
 

 3) … We have written n² as 2 times an integer, so n² is an even number. Therefore 
the square of an even number is an even number. 
 

 4) To prove: The set of integers has only one identity element under multiplication. 
  We will first prove that an identity element exists. For any integer, n, 1 × n = n × 1 
= n. Since 1 satisfies the definition of an identity element, a multiplicative identity exists. 
 

 5) … We will now prove that there aren’t multiple multiplicative identities by 
contradiction. Assume there is more than one distinct identity element.  Consider two 
identity elements, a, b ∈ ℤ , a ≠ b. 
 
D. Determine whether the following arguments are valid (by proving the conclusion) or 
invalid (by proving the negation of the conclusion or otherwise finding a 
counterexample). 
 1) Bunnies have long ears. Peter has long ears. Therefore Peter is a bunny. 
 

 2) Some vehicles are streetcars. If a vehicle is not a streetcar, it’s a hovercraft. 
Desire is a vehicle, but not a hovercraft. Therefore Desire is a streetcar. 
 

 3) Seedless grapes need to be grafted to proliferate. Neptune grapes are seedless. 
Therefore some grapes need to be grafted to proliferate. 
 
 

SOLUTIONS 
A: (1) All the world’s a stage.   (2) ∃x [¬D(x)]   (3) Money doesn’t grow on trees.    
  (4) ∀x, y [[P(x) ∧ S(y)] → ¬Z(x, y)]   (5) The customer is always right.    
  (6) ∃x [G(x) ∧ ¬A(x)]   (7) A rolling stone gathers no moss.    
  (8) ∀x, y [[D(x) ∧ H(y)] → ¬E(x, y)]   (9) One bad apple spoils the bunch. 
B: (1) ∃x [¬P(x) ∧ ¬Q(x)]   (2) ∀x [P(x) ∧  ¬Q(x)]   (3) ∃x, y [[P(x) ∨ Q(y)] ∧ ¬S(x, y)] 
  (4) ∃x ∈ ℝ ∀y ∈ ℝ [x · y ≠ 1]    
  (5) ∃x, y [[ƒ is continuous] ∧ [|ƒ(x)|/ƒ(x) ≠ |ƒ(y)|/ƒ(y)]] ∧ ∀z [[z ∉ (x, y)] ∨ [ƒ(z) ≠ 0]] 
C: (1) Universal Specification   (2) Universal Specification    
  (3) Universal Generalization   (4) Existential Generalization    
  (5) Existential Specification 
D: In these solutions, open statements and objects are represented by obvious initials. 
  (1) Invalid: other animals could have long ears (e.g., donkeys) and Peter could be 
one of those. 
  (2) Valid: Let U be the universe of vehicles. ① ∃x S(x) {Given} ② ∀x [¬S(x) → H(x)] 
{Given} ③ ¬H(d) {Given} ④ ¬S(d) → H(d) {Univ.Spec. ②} ⑤ S(d) {Mod.Toll. ④, ③} ∎ 
  (3) Valid: Let U be the universe of grapes. ① ∀x [S(x) → G(x)] {Given} ② S(n) {Given} 
③ S(n) → G(n) {Univ.Spec. ①} ④ G(n) {Mod.Pon. ③, ②} ⑤ ∃x G(x) {Univ.Gen. ④} ∎ 

http://creativecommons.org/licenses/by-nc-sa/4.0/

