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Essentials of Linear Algebra 

   
It can feel like you’re doing the same thing over and over again in the linear algebra 
course. There are a lot of parallels to be drawn between types of problems, but it can be 
hard to straighten everything out to see those parallels.  
 
There are three “worlds” that linear algebra problems in this course inhabit. We’ll take a 
look at the simplest possible problem in each one, and hopefully that will build a 
framework that lets us see how all three are really talking about the same thing. In all 
cases, we’ll look at a “three-dimensional” problem, since the bulk of the work in the 
course is based on that. 
 
SYSTEMS OF EQUATIONS 
 

We’ve seen systems of equations before: the goal is to find the solution or solutions that 
satisfy all the equations at once. (An older name for this kind of problem is a system of 
simultaneous equations.) The simplest possible problem in “three dimensions” looks like 
this: 
 

 u1   = b1  
  u2  = b2  
   u3 = b3  
 

That’s pretty simple. The variables are on the left, and the constants that those variables 
take on are on the right. 
 
VECTORS IN SPACE 
 

We’ve seen vectors in physics before as well: arrows that we can add or take scalar 
multiples of, and which can represent forces, velocities, and other things. They have 
magnitude and direction (how far, and which way), but not position (where). This means 
that we are free to move vectors to a new position if it helps us with a calculation. 
 

In linear algebra, we’re chiefly concerned with using vectors to get from origin to a 
generic point in space. The simplest possible 
solution of what vectors allow us to reference any 
point in space is the three unit vectors in the 
directions of the three coordinate axes. If we needed 
to combine these vectors to get the resultant 〈b1, b2, 
b3〉 we know we can scalar-multiply each one by bi 
and add the three vectors together. 
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MATRICES 
 

We also have a new class of problem, dealing with matrices. Specifically, we’re looking 
at the problem Ax = b: 
 

   
 

The simplest version of this problem is when the coefficient matrix, A, happens to be 
the identity matrix, I: 
 

   
 

Then x = b1, y = b2 and z = b3. 
 
DRAWING PARALLELS 
 

It’s not hard to see what the matrix problem and the system of equations problem have 
to do with each other: if we perform the matrix multiplication in the standard matrix 
problem, we get a column vector whose elements are a generic three-dimensional 
system of equations: 
 

   
 

So the matrix equation is a representation of a system of equations. What about the 
vector problem? You probably noticed that the variable b was used in all three examples. 
We will frequently write a three dimensional vector as a matrix — that’s why a matrix 
with either one row or one column is called a vector — and we’ll also frequently 
view a matrix with at least two columns and at least two rows as a series of 
column vectors fused together. The identity matrix is just the basic unit vectors î, 
ĵ, k̂ fused together into one matrix. In this case you can view the system of 
equations problem as finding scalar multiples of several vectors that add up to a target 
vector’s x-, y- and z-components: Given three vectors, 〈a11, a21, a31〉, 〈a12, a22, a32〉, and 
〈a13, a23, a33〉, is it possible to express 〈b1, b2, b3〉 as a linear combination of them:  
 
 u1〈a11, a21, a31〉 + u2〈a12, a22, a32〉 + u3〈a13, a23, a33〉 = 〈b1, b2, b3〉 
 

The only way to get the vectors to be equal is for the x-, y- and z-components are equal: 
 

 u1a11 + u2a12 + u3a13 = b1 
 u1a21 + u2a22 + u3a23 = b2 
 u1a31 + u2a32 + u3a33 = b3 
 

This is the system of equations again, which means it can be represented by a matrix 
built out of column vectors. So the matrix problem has two major classes of 
interpretations/applications: systems of equations and vectors. 

a11x + a12y + a13z 
a21x + a22y + a23z 
a31x + a32y + a33z 
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TOO MUCH OF THIS, TOO LITTLE OF THAT 
 

Each of the simplest problems we’ve seen is “balanced”. We know from our work with 
systems before this course that we like it when there are exactly as many equations as 
there are variables to solve for—three equations, three unknowns—because then we 
can expect to be able to solve the problem, and it likely has exactly one numerical 
answer. One of the themes explored in linear algebra is, what if there is an imbalance? 
 

If a system of equations has fewer equations than it has unknowns, then there is not 
enough information to solve the problem. Thus the system is more likely to be 
consistent (more likely that there is a solution, possibly many solutions) and less likely 
to be dependent (less likely that the system has a redundant equation). If it has more 
equations than it has unknowns, it’s more likely that the system is inconsistent (more 
likely that the information is contradictory, and thus there is no solution), and it means 
the system must be dependent. If three equations is sufficient to pin down one solution 
in the best case, then a fourth equation can’t tell us anything new. The system must 
have a redundant equation in it. 
 

What about the vector problem? It’s easier to understand if we visualize the results of all 
possible linear combinations of a given set of vectors. We’ll assume that the tail end of 
all these vectors will always be on the origin of coordinates. 
 

If we start with only one vector, v1 = 〈a11, a21, a31〉, then we can only take scalar 
multiples of that vector, and those resultants will all have the same direction as v1, so all 
the resultants lie on the same straight line. 
 

If we then add a second vector which is not parallel to the 
first, v2 = 〈a12, a22, a32〉, then linear combinations of those 
two vectors let us move anywhere on a flat surface, a 
plane. In a sense, the two vectors can act like î and ĵ, 
forming a less-convenient set of axes for the plane. 
 

The vector problem wants to know whether a linear 
combination of a set of vectors can equal a target vector. If we’re only given two vectors 
for three-dimensional space, then it’s very possible that the target vector lies outside the 
plane defined by the two given vectors; it’s more likely that the target is inconsistent 
with the set — no possible solution. 
 

This feels like it should be the analogue of a system with too few equations. It’s not! It’s 
a two-dimensional problem, since we’re trying to see whether the target lies on a 
particular plane. The plane is defined with three components, and therefore three 
equations: 
 

 u1a11 + u2a12 = b1 
 u1a21 + u2a22 = b2 
 u1a31 + u2a32 = b3 
 

It’s actually the too-many-equations situation. Two 
equations might work, while the third one doesn’t.  
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Adding a v3 = 〈a13, a23, a33〉, so long as it doesn’t lie in the same plane as the other two, 
gives you a way to get anywhere in the xyz-space. Since each vector allows movement 
in a direction that the others can’t provide, all three are essential, and there’s no 
redundancy. 
 

So what if we add a fourth vector? Since the original three from our example already 
cover all of three-dimensional space, the fourth vector doesn’t bring anything new to the 
table. What if the first three didn’t span all of ℝ³? Well, then there’s already some 
redundancy, and the set of vectors is dependent. No matter what, four (or more) vectors 
in three-dimensional space must have a dependency somewhere. We can say that n 
independent vectors with n components will span ℝn; if there are more than n, then the 
set of vectors must be dependent. 
 
HOMOGENEOUS SYSTEMS 
 

Reducing a problem to a simpler problem can help us understand it better. That’s why 
we study homogeneous systems. If we’re exploring what sorts of constants will or will 
not have a unique solution (or any solution) in a system of equations, then there’s 
something to be learned from the case where the constants are all 0. 
 

Solving this system is usually much easier than solving one with non-zero elements in b. 
If the generic, non-homogeneous system has only one solution, then the homogeneous 
one also has only one solution, and that solution is always the all-zero trivial solution. 
The homogeneous system is also never inconsistent; the trivial solution is always valid. 
It does however let us tell the difference between a dependent system and an 
independent system: if the homogeneous system has solutions other than the trivial one, 
so will a related consistent, nonhomogeneous system. (In this case, the 
nonhomogeneous system may not have a solution at all, which is why we have the word 
“consistent” in the conclusion.) 
 

The geometric interpretation of using a homogeneous system is this: if the 
nonhomogeneous system has one solution — i.e., the intersection of the objects each 
equation represents is one point in space — the homogeneous system translates that 
point to the origin. If the solution space of the nonhomogeneous system is infinite (it’s a 
line, plane, …) then the solution space of the homogeneous system has the same 
dimension (it’s also a line, or also a plane, …) and it’s “parallel” to the nonhomogeneous 
system’s solution space. 
 
THEREFORE, MATRICES 
 

Since all these applications and interpretations of these problems overlap each other so 
heavily, we investigate them through numerical matrices and vectors, since 
mathematicians are very good at picking apart numerical systems. All the other things 
you’ll learn about in linear algebra will be about the algebraic properties of matrices 
(how to do calculations with them, what properties they have, how you can analyze a 
matrix to determine the nature of a solution space without having to do the whole 
calculation, …) and then what the consequences of those properties are for systems of 
equations and geometry. 
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