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Equilibrium 

  When an object is perfectly still, then we know that there is no net force acting on the 
object. This is not the same as saying that there are no forces acting on the object. 
Usually, there is at least gravity and some counterbalancing force (usually a normal 
force or tension) at work. Equilibrium problems in physics use this fact to determine 
information about the individual forces in play in a situation. To solve these types of 
problems, we split the forces into horizontal and vertical components, and we may also 
have to consider the torque on an object. 
 

The standard formula for force problems is: Σ F = m · a. Since in equilibrium problems 
nothing is moving, a = 0 and this becomes Σ F = 0. We specify the directions to get: 
 

Σ Fx = 0  Σ Fy = 0  Σ τ = 0 
 

Example 1: The ring in the diagram at the right is supported by 
two ropes under tension and the ring supports a load. The tension 
in the rope tied to the wall is 25 N. What is the weight of the load? 
 

Solution: Since there’s nothing turning in the diagram, there 
is no torque involved in the solution of the problem. We can use 
the first two equations for forces in the x- and y-directions to solve 
the problem. Call the tension in the ropes tied to the wall and 
ceiling T1 and T2, and the load W. 
 

The ring has two horizontal forces acting on it: the horizontal 
components of the tensions in the supporting ropes. Since the ropes are pulling in 
opposite directions, and since everything is in equilibrium, their horizontal components 
must be equal. (We can’t say the same about the vertical components — with the 
ceiling rope’s tension and the load unknown, we don’t have enough information to 
resolve the problem.) We’ll start with the horizontal part. 
 

Some students try to memorize that you use cos to find the horizontal component of a 
vector and sin to find the vertical component. This is only true if the angle is given 
relative to a horizontal line. If we tried to use this technique on the 75° angle on the wall 
rope we’d get an incorrect answer. The rope tied to the wall has an overall tension of 25 
N and the rope itself is mostly horizontal. As a sanity check, the horizontal component of 
that tension should be close to 25 N and the vertical component should be much less. 
 

Σ Fx = 0 
T1x − T2x = 0 
T1x = T2x 

25 N · sin 75° = T2 · cos 85° 
24.15 = 0.087 T2 
T2 = 24.15 ÷ 0.087 = 277.06890… N 
                                                                                  (continued in next column) 

Σ Fy = 0 
T2y − T1y − W = 0 
T2y − T1y = W 
277.07 sin 85° − 25 cos 75° = W 
W = 269.544… ≈ 270 N 
 

75° 

85° 
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Example 2: A drawbridge (uniform, weighing 70. N) hangs from a 
cable and makes an angle of 20.° with the horizontal. There’s a 240-N 
weight ¾ of the way to its free end. The cable currently makes an 80.° 
angle with the drawbridge. Find the tension in the cable and the total 
force exerted by the drawbridge’s hinge. 
 

Solution: Since the drawbridge pivots on its hinge, there is torque 
on it as well as traditional linear forces. If we look at torque first, and 
we use the hinge as our axis of rotation, then the forces acting on the 
hinge all have a distance of 0 and they won’t come into the equation. The only unknown 
will be the tension in the cable. The drawbridge itself is “uniform”, which means its 
density is the same everywhere, so its weight (mass) is distributed evenly throughout. 
This means its centre of gravity is exactly halfway down its length. (We don’t need to 
know how long the drawbridge is; in equilibrium problems length will cancel out, leaving 
us looking at just fractions of the length.) Consider the forces holding the drawbridge up 
to be positive: 
 

Σ τ = 0 
τcable − τdrawbridge − τweight = 0 
τcable = τdrawbridge + τweight 
T · sin 80° · L = 70 N · sin 70° · ½L + 240 N · sin 70° · ¾L 
0.985 T = 32.889 + 169.145 
T = 202.034 ÷ 0.985 = 205.151 ≈ 210 N   
 

Now that we have the tension, we can find the components of the force acting on the 
hinge. Only the cable’s tension acts on the drawbridge (and therefore the hinge) in the 
x-direction. The weight and the drawbridge are partially held up by the cable in the y-
direction; the rest of the force is provided by the hinge. 
 
We need to know the angle the cable makes with either the horizontal or the vertical to 
finish this problem. If we draw a horizontal line through the end of the drawbridge, 
cutting through the vertex of the 80° angle, the part that’s below the line is 20°. (The 
drawbridge makes a 20° angle with the horizontal no matter which end we measure 
from.) This means the part above it must be 60°, so the cable is 60° from the horizontal. 
 

Σ Fx = 0 
Tx − Fhinge,x = 0 
Tx = Fhinge,x 
Fhinge,x = 205.151 · cos 60° = 102.575… 
Σ Fy = 0 
Fhinge,y + Ty − Wdrawbridge − Wweight = 0 
Fhinge,y = Wdrawbridge + Wweight − Ty 
Fhinge,y = 70 + 240 − 205.151 · sin 60° 
 

 = 132.334… 
 
θF = tan−1 (132.334 / 102.575) 
 = 52.220… ≈ 52° 

|| Fhinge || = 22 575.102334.132   

 = 167.434 ≈ 170 N 
 

 
 
 
 

20° 

80° 
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EXERCISES 
A. A block rests on a table, attached to ropes that pass through 
pulleys. Suspended from the ropes are two weights. The heavier of 
these two weights is 45 N. The block on the table is just on the 
verge of sliding, and its weight is 36 N. The coefficient of friction 
between the block and the table is 0.16. How heavy is the other 
weight? 
 
B. A wet shirt is pinned on a clothesline, 
causing the line to sag unevenly. The shirt 
weighs 18 N. What is the tension in each 
section of the rope? [Hint: the answers 
aren’t the same. Because the shirt isn’t 
free to slide on the clothesline, this system 
won’t balance itself out.] 
 
C. A diving board is constructed by resting a plank on a support ¼ of the 
way along the plank, and securing the end near the steps with a cable 
stay. The plank is uniform and weighs 655 N. A man walks 
out to the end of the diving board, and as he’s 
standing at the end, preparing to dive, the cable 
experiences 3520 N of tension. How much does the 
man weigh? [Hint: There are torques about the 
location of the support. Use this point as an axis of 
rotation.] 
 
D. A rod with a banner wrapped around it is being 
lowered down the side of a building on two cables. 
One end of the banner gets snagged on an open 
window while the other side continues to be lowered. 
The rod and banner have uniform density along their 
length and together they weigh 720 N. The crew 
lowering the banner have noticed the problem and 
stopped the procedure in the position shown. Find the 
force (magnitude and direction) exerted on the 
window frame by the rod and the tension in the cable. 
 
 
 
 

SOLUTIONS 
A. 39 N 
B. left side: 61 N; right side: 60 N 
C. 520. N 
D. tension = 3.7 × 10² N; force from banner = 3.6 × 10², 85° below the horizontal 
 

12° 5° 
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